MEASURING TECHNOLOGY & TEST SERVICE 2024

Coating thickness measurement

Digital Coating Thickness Gauge SAUTER JCT

New-generation measuring coating thickness gauge

Features

- · Accurately determines the thickness of coats of paint or varnish on iron or non-iron base material
- · Combination of magnetic and eddy current measuring methods enables particularly high levels of precision and flexibility. The base material is detected automatically
- · Stable, reliable performance as well as non-destructive measuring
- Measuring range up to 2000 µm
- · Low-wear sensor thanks to state-of-the-art technologies
- · Single and two-point calibration
- · Single and repeated measurements for pass/fail assessment. The three-colour LED display shows the current value attribute (green: qualified, red: below the limit value, yellow: above the limit value)
- In the display rotates automatically and makes it easier for the user to read the measured values from many different angles, or alternatively it can be locked in place manually

- · Selection of functions with automotive mode, voice transmission, Bluetooth App and LED torch
- · Bluetooth App included for communication and applications
- 2 Main application areas: Coating thickness measurement on metals in industry and research, for example in the automobile industry, metal processing, painting and inspection
- 3 Delivery in a practical box

Technical data

- Measuring precision: 2 % of [Max]
- Selectable measuring units: µm, inch (mil)
- · With internal sensor
- · Internal data memory for up to 55 sets of values and 60 cells per set
- Overall dimensions W×D×H 152×65×35 mm
- · Net weight approx. 0,20 kg

Accessories

· Calibration foils for increased measuring accuracy (covers the range from 20 up to 2000 μm , with < 3 % tolerance), SAUTER ATB-US07

STANDARD

Model		Measuring range	Readout	Sensor types
SAUTER		[Max] µm	[d] µm	
JCT 100	NEW	2000	0,1	FE NFE

MEASURING TECHNOLOGY & TEST SERVICE 2024

SAUTER Pictograms

Conformity assessment

Models with type approval

DAkkS calibration

The time required for

DAkkS calibration is shown

Factory calibration (ISO)

The time required for factory

calibration is specified in

Package shipment

The time required for

internal shipping prepara-

tions is shown in days in

the pictogram

the pictogram

the pictogram

Pallet shipment

The time required for

internal shipping prepara-

tions is shown in days in

in days in the pictogram

systems

possible

for construction of verifiable

M

DAkkS

+3 DAYS

ISO

1 DAY

Adjusting program (CAL)

For quick setting of the instrument's accuracy. External adjusting weight required

Calibration block

Standard for adjusting or correcting the measuring

Peak hold function

Capturing a peak value within a measuring process

Scan mode

Continuous capture and display of measurements

Push and Pull

The measuring device can capture tension and compression forces

Length measurement

Captures the geometric dimensions of a test object or the movement during a test process

Focus function

Increases the measuring accuracy of a device within a defined measuring range

Internal memory

To save measurements in the device memory

Data interface RS-232

Bidirectional, for connection of printer and PC

Profibus

For transmitting data, e.g. between scales, measuring cells, controllers and peripheral devices over long distances. Suitable for safe, fast, fault-tolerant data transmission. Less susceptible to magnetic interference

Profinet

Enables efficient data exchange between de-centralised peripheral devices (balances, measuring cells, measuring instruments etc.) and a control unit (controller). Especially advantageous when exchanging complex measured values, device, diagnostic and process information. Savings potential through shorter commissioning times and device integration possible

Data interface USB

To connect the measuring instrument to a printer, PC or other peripheral devices

Bluetooth* data interface

To transfer data from the balance/measuring instrument to a printer, PC or other peripherals

WIFI data interface

To transfer data from the balance/measuring instrument to a printer, PC or other peripherals

Data interface infrared

To transfer data from the measuring instrument to a printer, PC or other peripheral devices

Control outputs (optocoupler, digital I/O) To connect relays, signal

lamps, valves, etc.

Analogue interface

To connect a suitable peripheral device for analogue processing of the measurements

Analogue output

For output of an electrical signal depending on the load (e.g. voltage 0 V - 10 V or current 4 mA - 20 mA)

Statistics

Using the saved values, the device calculates statistical data, such as average value, standard deviation etc.

PC Software

To transfer the measurement data from the device to a PC

Printer

A printer can be connected to the device to print out the measurement data

Network interface

For connecting the scale/ measuring instrument to an Ethernet network

KERN Communication Protocol (KCP)

It is a standardized interface command set for KERN balances and other instruments, which allows retrieving and controlling all relevant parameters and functions of the device. KERN devices featuring KCP are thus easily integrated with computers, industrial controllers and other digital systems

GLP/ISO record keeping

of measurement data with date, time and serial number. Only with SAUTER printers

Measuring units

Weighing units can be switched to e.g. non-metric. Please refer to website for more details

Measuring with tolerance range (limit-setting function)

Upper and lower limiting can be programmed individually. The process is supported by an audible or visual signal, see the relevant model

Protection against dust and water splashes IPxx

The type of protection is shown in the pictogram cf. DIN EN 60529:2000-09, IEC 60529:1989 +A1:1999+A2:2013

ZERO

Resets the display to "0"

Battery operation

Ready for battery operation. The battery type is specified for each device

Rechargeable battery pack

Rechargeable set

Plug-in power supply 230V/50Hz in standard

version for EU. On request GB, AUS or US version available

Integrated power supply unit

Integrated, 230V/50Hz in EU. More standards e.g. GB, AUS or US on request

Motorised drive

The mechanical movement is carried out by a electric motor

Motorised drive

The mechanical movement is carried out by a synchronous motor (stepper)

Fast-Move

The total length of travel can be covered by a single lever movement

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by KERN & SOHN GmbH is under license Other trademarks and trade names are those of their respective owners